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1. INTRODUCTION 

In order to discuss properties of the primordial quark-hadron phase transition 

or of condensed stellar objects, it is necessary to know the equation of state of the 

quark-gluon plasma. At sufficiently high densities or temperatures, when saymp- 

totic freedom holds, perturbation-based equations of state may be used’. At low 

densities or temperatures, however, since we do not know how confinement occurs in 

QCD, one must resort to using phenomenological quark matter equations of state. 

Various such kinds of phenomenological equations of state have been proposed, each 

differing in the way confinement has been imposed: through boundary conditions 

as in the M.I.T. bag equation of stater, through the acquisition of a large msss by 

quarks (coupled to a scalar field) outside hadrons ss in soliton-bags3, etc. 

In this talk, we will derive a phenomenological equation of state for quarks 

interacting through some interquark potential. (The idea of describing the inter- 

actions between quarks by phenomenological interquark potentials such as those of 

potential models used to fit experimental data on quarkonia, wss first suggested 

by Wagoner & Steigman41. It was later taken up by Olives) annd Boal, Schachter 

& Woloshynsl to describe the quark-gluon plasma in the Thomas-Fermi approxi- 

mation. Their type of equations of state was applied to studies of the primordial 

quark-hadron phase transition by KUlman’l and Schramm & Olives).) In addition, 

in order to compute this equation of state, we will use one of the simplest non- 

perturbative approximation, the Hartree approximation. We will restrict ourselves 

here, to zero-temperatures. In this case, non-virtual gluons -contrarily to photons- 

may be present because, due to their interactions, they may condensate in momen- 

tum space, but they will contribute to the equation of state for zero, so we need not 

consider them. 



This approach is presented in more details in section 2 for scalar colour-independent 

confining potentials. In section 3, it is extended to confining (colour-independent) 

potentials with scalar and vector components, Fock corrections are studied and the 

case of several quark tlavours is examined. Finally, we discuss the advantages and 

drawbacks of this method, as well ss possible improvements, in section 4. 

2. METHOD 

a. The effective Lagrangian and the approximation 

As a starting point, let us assume that the quarks interact via the following 

effective Lagrangian density 

L = ?b)(i B - m)+) - ;/d3.+)W)V(I = - * IM(~l~(~l WI 

i.e. we treat the quarks ss Dirac particles and their interactions are accounted for 

by the phenomenological potential V. 

From (2.1), one can derive the energy momentum tensor T,,“. On the other 

hand, one may assume that the medium is uniform and isotropic, in which case one 

also has 

TPY = (6 + P)U,h - PSru (2.2) 

where p is the pressure and c is the energy density. Form (2.1) and (2.2) it follows 

that 
< TOO > 

t= 
/ 

d’p pore + Fi + m 

V = (27r)’ 2 G’ (P) (2.3a) 

< T” > 
/ 

d’p POYO - he’/3 - m 
p= 3v = __ (2x14 2 G< (P) (2.3b) 

So that all what is needed in order to calculate the equation of state, is the expression 

of G<(p) and this is what we now turn to. 
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The (Dirac) equation of motion which follows from (2.1) is 

(i ,B - m)G(z, y) = 6’(z - y) - i / d3zG(s, z; y, z+)V( 1 z - z ~)~z,=,, (2.4) 

where the notation Z+ means that so+ is infinitesimally greater than zs. 

In order to solve (2.4), one has to specify what is the form of the interquark potential 

V and how to express the two-particle Green function in terms of known or calcu- 

lable quantities. First, we will assume the following structure for the interaction 

potential 

V(r) = Vv(r)-yt”@’ - Vs(r)lb”lb” (2.5) 

In practice, one takes the vector term VV to be the one-gluon potential expected to 

be dominant at short distances and the scalar term V, to be the confining potential 

expected to be dominant at large distances r 

In addition to specifying the Lorentz structure of the potential, its colour struc- 

ture has to be determined. While it is normal to multiply the one-gluon exchange 

term by a factor of X(“.X(r’/4, no decisive theoretical or experimental argument 

can be put forward to decide what to do for the confining part. So in addition to 

assuming that the confining potential is scalar, we will assume simply that it does 

not depend on colourr. (Note that such assumptions are also made in the MIT and 

SLAC models.) So 

i 

Vs(r) = vo(r)l!“l!*’ 
V”(r) = V~(r)X((‘)2*)/4 

Finally, the two-particle Green function will be approximated by 

G-3) 

G(+y;r,t) - G(z,4G(y,t) (3.7) 
‘PhenomenologicaUy, a scalar component Vs ia necessary because in the non-relativistic expansion 

of the Bethe-Salpeter equation, the spin-orbit term har opposite sign for scalar or vector potentials, 
the right sign to get the observed ordering of the “Pi levels of charmonium being that of scaler 
potenti&?‘. The confining potential ir uruallg osrumed to be thir scalar component. In the next 
section, we also discuss the possibility that the confining potential has both e. scalar and e vector 
component. As a matter of fact, one doea not know whether the confining potential does not have 
a mere complicated structure (i.e. with tensor, axial, etc, components) but potentials of the form 
(2.5) are the simplest ones leading to good theoretical predictions for quark&a. 

aWe discussed brietly other possibilities for the colour dependence ia ref. 10 and 11 
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(This in fact the Hartree approximation as will become clear later.) 

Insertion of (2.7) into (2.4) then leads to an equation in terms of one-particle 

Green functions only 

[i ~%l~ -ml~l, fi / 
@.zG(z,z+)V(I z - = h=z,]G(~ Y) = 6% - y)lol, (2.8) 

The Hartree potential is defined by the following matrix 

VI,- c -i / 
d3zG(z,zf)V(I z - z ~)l~,=,, (2.9) 

Using (2.5) and (2.6) in (2.9), one obtains 

UH - - 
/ 

d3zVc(j z-z ]).Tr[-iG(z,~+)l~l,].lol,+ 
/ 

d3zVc(j z-z I).Tr[-iG(z,z+)r,X.].r’X” 

(2.10) 

The last term in this equation is in fact null at equilibrium because then the Green 

function is proportional to the unity matrix in colour space. So that 

rJH = Uf.l*l, (2.11) 

where 

Uf s - J d!z[Vc(l z-z ])].Tr[-iG(z,z+)lol,] 

Equation (2.8) may be written in momentum space as below 

jvShere~&W = 1dc 

mR = m+UF 

(mH is designated thereafter as the effective mass). 

This corresponds to the following diagrams in the calculation of G(p) 

(2.12) 



iG(k)= + .-- 0 
iGo iGo(k)Uf Go(k) 

where Go stands for the noninteracting propagator. 

The problem of a given quark having two-body interactions with others has been 

replaced by that of a free quark in the external field (2.9). The effect of this field is 

to change the mass m into the effective mass mn. 

b. Finite Hartree equations 

(2.12) can be solved by using the methods of temperature-dependent quantum 

field theory’*) and we obtain the following expression for the quantity which we 

want to compute, the retarded propagator 

-iG(z,z+) = J&G’(p) 

exP[@( p+m&-F)+l] =Jrs :’ z 2 p+m& .’ 

+ s&y-$ 
1 

70 iJ+m:,-,.. . 
-70 p+ml,-5. . . 

wbq P+m&+rl+ll + I &$Y$~“~~~ J. 2 p7+mg :*+?I%” (2.13) 
‘. 1. 

The first two integrals represent the contribution of matter while the last one 

accounts for vacuum fluctuations -and gives rise to a divergence. However, owing to 

the fact that our approach is essentially phenomenological, these fluctuations should 

not show up; the matter part only should be used throughout the calculations (see 

appendix). Inserting the matter part of (2.13) into the expression of Uf in (2.11) 
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then leads to the following self-consistent equation for UF its a function of the 

chemical potential, also denoted by p, ot zero temperature: 

u,B = -/d34W *- = III-@jDPI &de) (2.14) 

where 

pF = f= ;;:r;J-- 
( 

This equation is rather similar to that of the scalar plasma studied by Kalmanr3) 

and Diaz-Alonso & Hakim”) or of the scalar part of the nuclear matter model 

developed by Walecka and ChinIs) 

u,H = -$/gpI $+jy-&) , (2.15) 

The part of the ratio 5 is played here by Jd3.zVc(I z - z I). 

However contrarily to (2.15) expressions (2.14) may still contain inhities, since 

J d3zV,(l z - .a I) is infrared divergent, for instance in the case of a linear confining 

potential. But, as advocated by Kogut and Susskind’s), infinitely rising potentials 

are expected to be screened by the creation of quark-antiquark pairs. As a first 

approximation, one may suppose that there exist some screening length cs ( to be 

determined from experiment), fixed whatever the value of /.J is,then 

Ug = - 1,‘” d3rV& 
or - 1 d%Vc(r) exp(-r/es) 
or etc (2.16) 

x {6fP $r*> 

according to the way screening occurs. 

However, one expects cs to depend on p and it is possible to compute this depen- 

dence: Vz is an energy felt by a given quark, so that it should not exceed twice 

the Fermi energy c~ = p, else pair creation would occur (one must use the Fermi 

energy as a threshold, and not the quark mass, because in dense matter pairs can 
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only be created above the Fermi sea). Hence one has 

2p = / -Jisd3rVc(r) 
or - J d3rVc(r) exp(-r/es) 
or etc 

x {‘3JP $s-~),u:=~~p 

(2.17) 

In other words, the finite values of Jd3zVc(I (z - z) I) is given by the following 

formula 
- Jo’” d3rVc (r) 
or - ,Jd3r[crVc(r) exp(-r/es)] 
or etc (2.18) 

= (sJ.” 3&liur;*., 
Eq. (2.18) holds for a given p, whatever the value of Uz is, not just for f2~, and 

so (2.14) can be replaced by 

u[ = f&J 

{6/P &~l,vg=+z, 
(2.19) 

Note that in the equation (2.19), VC has completely disappeared -because of the 

way screening wss introduced- so the shape of the confining potential or the way 

it is damped (i.e. is it exponentially damped or does it stop sharply at a certain 

distance or etc) does not matter. Note also that only the minus sign is allowed in 

(2.9) is allowed, else the denominator would have pi = 0 and vanish, so the finite 

value of J d3zVC(( (z - z) I) is positive. 

c. Numerical results (for one flavour) 

Equation (2.19) may be solved numerically. In order to get a first insight into 

the solution, let us assume that the screening length -and so the finite value of 

J d3rVc(l (z - .s) I) as well- is constant. In figure la, we show the solution of the 

equation for the effective mass (2.16) for various positivevalues of J d3zVc(j (z-z) I) 
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(multiplied by 3mz/n2 for computational commodity, and labeled as I’). In the 

general case (2.19), the curve for the effective msss is presented in figure lb. It 

is rather similar to la, except for the fact that, due to screening, it terminates 

abruptly. 

Once (2.19) is solved, the equation of state may be computed easily. By inserting 

the matter part of (2.13) into (2.3a-b), one gets at zero-temperature 

“Q = 3 
/ ,” &c&2+ ‘ygg? 

PQ = 3 / ,” &&G%- p$=$9 

The density of quarks minus antiquarks is simply given by 

(2.20b) 

In figure 2a, the pressure has been plotted as a function of the chemical potential: it 

shows that as the density increases a first-order phase transition takes place. This 

transition corresponds to the passage of a state of massive quarks to a state of 

quarks of decreasing mass (dashed-dotted line in figure lb), as one would expect 

from perturbative QCD. In Fig. 2b, the energy per particle as a function of particle 

density is represented. At low density, it is smaller than m, so the quarks are in a 

collective bound state. This may be interpreted as the fact that the quark just start 

to go out of the hadrons. Thus the overall picture which is obtained is satisfying to 

describe quark matter at low density (where confinement is expected) and medium 

density (where the quark mass should start to decrease). 

3. SOME EXTENSIONS 

a. Colour-independent confining potential with scalar and vector 
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components 

As mentionned in the beginning of this section, it is possible that the confining 

potential has a more complicated Lorentz structure than just scalar. One may 

wonder how the description of the quark-hadron transition that we just obtained 

would then be affected. So let us assume that the interquark potential is still given 

by (2.5) but that 

i 

Vs(r) = aVo(r)l$l)l$s) 
V”(r) = Vc(r)i(1)i(2)/4 - @Vo(r)Q)1!2) (3.1) 

Proceeding as above, one obtains the following equation for the interacting propa- 

gator 

i.e. 

A 

iG(k)= + 

ibm; wr]W(~) = 1~1, 

m = m+Uf 

6 = p-u; 

I 
-- 0 + 

(3.2) 

-0 
iGo iGs(k)Uf Go(k) iGo(k).iy’ Uf.Go(k) 

Again after solving (3.2), one obtains expressions for the components of the 

Hartree field 

u,R = -/d3+lis(l 2-1 I)].@r f$&$} (3.3a) 

U~=~/dg.[-/W&-z~)].{6~$$ (3.3b) 
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vi” = 0 (3.3c) 

where 

PF = 
J(p - u,“)* - m:, if (Jo - UoH)* > m& 
0 otherwise 

and 

there is a plus (resp. minus) sign in the expression of U,f if P-U?) > rn~ (resp. <). 

In order to render (3.3a-b) finite, one has to introduce two screening lengths. 

The method presented above to compute their density dependence may be used 

again, one obtains the following set of coupled self-consistent equations 

uf = f2+ 

{f310P’ &~),v:=~zr. 
(3.4a) 

u,R = f2cF 

{‘3f,PF $++~~rr. 
(3.4b) 

which may be solved numerically. It may be shown that the mass transition will 

survive’Ol. 

b. Fock corrections 

In the Hartree approximation, the fermionic - anticommutating - character of 

quark operators is not taken into account. In order to do that, one has to include 

the Fock terms, so let us replace (2.7) by 

% Y; *, t) = G(z, ~)G(Y, t) - G(s, t)G(y, z) (3.5) 

By using similar methods to those of section 2, one can show that the equation of 

motion (2.4) becomes 

[7oP&~ - %F - mm] G(P) = 1 

10 
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where 

&F = PO-“:-u:(I~/) 

hF = $+$@([$I) 

mHF 5 m+@+U;(Ijjj). 

which corresponds to the following diagrams 

Wl=’ + I-- 0 + ko + :;I + p 

iGo iGo(k)UF Go(k) iGo(k).iy’ Uf.Go(k) iGo(k (k).Go(k) iGo(k).i ‘yW$(k).Go (k) 

The solution of this equation leads to the following components for the Hartree- 

Fock field 

G’ ={ Jd3r[--Vc(41 1 x 6lP &~-SF*; 

Vi’ =*{ / d3r I-PVC(r)]) x 61 f$$ 

u,F =-,~~‘-“~~(lB-n’l)+4~~~(Ip’-~l)--P~~(lp’-~I)l) 

u,F =r,~;{-~~c~-~I)-z[~c(]~-~]) 

UvF =-J&&=&- a-c P’-al)-~l~~(Ip’-~l)-~~~(IP’-~l)1) v (I 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(3.7e) 

(a=1 and p=O correspond to the pure scalar confining potentials of section 2 and 

a # 0 and p # 0 to the confing potentials of paragraphe 3.a). 

As in the Hartree approximation, the (infinitely rising) confining potential gives 

rise to infrared divergences. But because of the convolutions, the potential terma 
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in the Fock components (3.712-e) cannot be factorised as in the Hartree components 

(3.7a-b). The fact that the potential terms / d3r [aVo(r)] and J d3r [-PVC(~)] in the 

Hartree approximation could be factorised, had been used to compute their (finite) 

physical value and avoid having to specify the actual shape of the potential. In the 

Fock approximation, this trick cannot be applied: both the shape of the potential 

and the explicit way to remove infinities have to be specified. As for the shape of 

the potential, we will assume for simplicity 

V=(r) = -a/r and Vo(r) = -(kr - U) (34 

and for the screening, we will assume that, due to pair creation, the interquark 

potential is exponentially smoothed, i.e. the scalar and vector components of Vo 

will respectively be multiplied by e-elr and e-c*r. This procedure was followed for 

instance in reference 17. Ideally one would like to know the density dependence of 

k,U,a,cl and cz to implement and solve (3.7a-e) but we have no way to compute it. 

However, it seems reasonable to think that since our purpose is to study the effect 

of the Fock corrections to the Hartree approximation, we will get, for densities of 

order some timea the normal nuclear matter density, a qualitative understanding by 

keeping k,U,a,cl and c2 constant. For these low-medium densities, it may then be 

shown that the mass first order phase transition survives and that the thermody- 

namical functions can be approximated by their Hartree expressionI’. 

c. Generalization to several quark flavours 

Proceeding as for the one flavour case, it is easy to show that in the csse of 

several quark flavours 

u,H = %L 

&=u,d,a I... 612 3 & ,vf=m2,,’ g=“,d~‘*... (3.9) 
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where 

P:(G,k) = otherwise 

In the above expressions, ILL designates the smallest among the Fermi energies of 

the various quark flavours; pairs of this flavour are created preferably to screen the 

interquark potential. 

It can be seen that the Hartree field U,” is the same whatever the flavour, and the 

effective masses rn& = m, + CJ!, which play a similar part to running masses, will 

all have a similar decrease. 

Example 1: conversion of neutron matter to two flavour quark mat- 

ter 

Let us first study the case of neutron matter undergoing a phase transition to 

quark matter. Weak interactions do not have time to settle and charge neutrality 

simply reads 
2 

e(p - $) = 0 (3.10) 

Hence, 

and 

Pu = P (3.114 

fid = 
I 

[2’j3P* + (1 - 2*/3)m&]‘/2 if p > m E m, z m,j 
cc otherwise 

(3.11b) 

One sees that pd is greater or equal to &, so ug pairs will be created rather than da 

pairs, i.e. in (3.9), L=u. Note that quantities will now be plotted not as a function 

of 1” or fid but as a function of the Gibbs energy per particle G zz &,d,,,... n,/no = 

hh + 2pd. 

Equation (3.9)may be solved numerically. Its solution as a function of G is quite 

similar to that of the one flavour case in figure lb, so we do not show it. Then 
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one can plot Pi and see that the quark plasma will undergo a first order phase 

transition ; again since it is very much alike figure 2.a, we do not show it. The phase 

transition takes place at the value G/m = 1.575. This value of G corresponds to a 

density of nt/m3 = 0.0085. 

In what precedes, all the quantities have been computed in unit of the quark 

mass, m, and indeed this is the only parameter of the two flavour model. It is in 

fact possible to find a lower bound for this parameter: nt must be greater or equal 

to the nuclear matter density, so we must have 

nt 2 nnuc.m.tt. = 1.28 10s Mev3/m3 which implies m 2 532. Meu (3.12) 

The fact that we obtain 532.Mev as a lower bound for the constituent mass -usually 

thought to be of order 340. Mev- is an indication that our model is reasonable but 

crude. In what follows, we are going to see that it is possible to get an upper bound 

for m as well. 

Example 2: three flavour quark matter in chemical equilibrium 

Once the transition is accomplished, the quarks will establish chemical equilib- 

rium via the weak interactions 

d+-+u+e+D, (3.13a) 

s+-+u+e+li, 

s+uod+u 

The weak interactions (3.13a-c) imply that 

pd = ,b = P 

Pu + I& = P 

(3.13b) 

(3.13c) 

(3.14) 

‘The quark contribution to the various thermodynamical functions is a sum of terms like (Z.ZOa- 

c). If electrons must be added to maintain charge neutrslity, their contribution to the equation of 
state may be taken to be that of a free Fermi gar. 
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and overall charge neutrality requires that 

2 
.+, - ;nd - $, - tt.) = 0 

Thus there is only one independent chemical potential, which we choose as being 

p. One sees that pu = p - pe is smaller or equal to pLUr so again uii pairs will be 

created preferably. 

Note that in the three flavour case there are two parameters: m G m, and r = 

m,/m,. Since m, and m, are constituent masses, we expect that r w 500./340. = 

1.47. 

Equations (3.9) for U,H and (3.15) for say, p., can be solved simultaneously 

numerically for various values of g, with the input (3.14). Once this is done, the 

behaviour of the various thermodynamical functions can be obtained, it is rather 

similar to that of one flavour quark matter -so again we do not show them. (This 

does not mean that there will be another phase transition, once u and d quarks 

start to appear with a given density, they will be gradually depleted, the pressure 

needs not vary abruptly). 

As can be seen in figures 2a-b, the curves for the various thermodynamical 

functions terminate suddenly. Here this corresponds to a value of G equals to 1.7, 

which we will denote by G,.,. Up to G,., the equation of state is very non- 

perturbative. On the other side, one may compute the approximate value of the 

Gibbs energy per particle Gprrt at which quark matter should start to be describable 

with a perturbative equation of state. Let us suppose that this happens when the 

coupling constant equals one ‘. We can get a rough approximation of G,.,, by 

solving 

a’b2) = (33 - 2 ii I+/*) = ’ 
(3.16) 

‘We could just M well take a half or any other value smaller than one, this would increase the 
upper bound we are looking for. So taking a, = 1 ia more restrictive 
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(This is the expression of the running coupling constant in the case of quarks of 

mass much smaller than p.) 

If we take A to be 200. Mev for instance and N, = 3, the solution of (3.16) is 

p=401.Mev. So, if r zz 1.47, the following constraint should be satisfied 

G mar 5 Gprrt = 3 x 401./m which implies m 5 708.M~ (3.17) 

This upper bound is compatible with the lower bound (3.12). It corresponds to a 

transition density nt - 2.4r~~“~.,,,,,~~.. 

4. CONCLUSION 

The methods of relativistic quantum many-body theory have been applied to 

the study of quark matter interacting through phenomenological potentials at zero 

temperature. It was shown that if the chosen confining potential has a scalar (or 

scalar-vector) Lorentz structure and is colour-independent, the quark plasma un- 

dergoes a first order mass transition from a state of massive particles at low density 

to a gas of particles of decreasing mass at high density -as one would expect from 

QCD. Moreover, at low densities, quarks are in a collective bound state, thus sug- 

gesting that they just started to go out of the hadrons. Finally, all the computed 

quantities are independent of the shape of the interquark potential -because of the 

way screening through pair creation has been implemented- and Fock corrections 

may be neglected (at low-medium density). This one-flavour model was then gen- 

eralized to several flavours and applied to the hadron-quark phase transition in a 

cold plasma. It was shown that the u-d constituent quark;mass had to be in the 

interval [532.Mev,704.Mev] -which is reasonable for such a simple model. Thus a 

satisfying description for quark matter seems to emerge from this approach. 
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However, some reservations must be made. First, instantaneous interquark po- 

tentials were used. At low-medium densities where quarks are massive, this should 

be a reasonable approximation. (Instantaneous potentials have been used widely 

to study nuclear matter in exactly the same range of densities we are interested in, 

namely at nuclear density -1.28 lo6 Mev3- and slightly higher.) But at high den- 

sities where quarks become more and more relativistic, such an approach should 

not be used. As a matter of fact, our equation of state is only computable for 

low-medium densities (this is reflected by the fact that the curves for the thermo- 

dynamical functions, like 2a-b, terminate abruptly); at high densities, it should be 

matched with a perturbative equation of state. (Note that other phenomenological 

equations of state such as the M.I.T. one, cannot be used either -for other ressons- 

at high densities.) 

Second, the confining potential may have a more complicated structure than just 

scalar (or scalar-vector) and colour-independent. (It might be actually interesting 

to develop the interquark confining potential with Gell-Mann matrices -ss can be 

done in the Clifford algebra with Dirac matrices- and study other more complex 

colour structures.) 

Third and finally, it is not completely obvious which kind of mass must be used 

for m. Looking at Eq. (2.1) for instance, one might favour a current mass - indeed 

this is what Olive51 did for example - because one would expect that, as a result 

of interactions with other quarks, this current mass is increased to the value of a 

constituent mass. However, it is not so: the Hartree field contribution to the quark 

mass is negative and m,v/m + 1 as ,U decreases as can be seen in figure 1.b. Also it 

may be shown that if one introduces non-zero temperatures in a gap equation such 

as (2.19), at a given density, mn/m decreases as the temperature increasesi’l, so 

that, in order that chirality be restored at high density or temperature, the choice 



of a constituent mass for m is most reasonable . In addition, since potential models 

of quarkonia and hadrons are fitted with constituent masses, and that our approach 

makes use of such potentials, it is also more self-consistent to use constituent masses 

(this is what was done as well for instance in reference 18 .) 

It is also easy to imagine some possible improvement to this model. First, in 

the Hartree approximation, one replaces the interaction of a number of quarks on 

a given quark, by an exterior field acting on this quark. As a consequence of this, 

we get a collective bound state at low densities and not a soup of colour singlets 

(hadrons). In order to get , if not baryons, at least mesons, an approximation of a 

different type should be used. (It would also be interesting to study the effects of 

other approximations on our results.) 

Second, one can think of other ways of computing screening lengths in a self- 

consistent way. For instance, one can assume some value for the screening length, 

study the plasma oscillations of the quark gas, then from this compute the associated 

Debye shielding length and see if it agrees with the value initially assumed for the 

screening length -if not iterate. It would be interesting to compare this approach 

with the one followed here. 

Third and last, this equation of state could be generalized to non-zero temper- 

ature. Non-virtual gluons could be considered as modes propagating in the quark 

plasma -in much the same way that a solid emits phonons- and their energy spec- 

trum obtained by computing the plasma oscillations. 

In summary, the equation of state presented here should be easy to improve. 

In addition, its use in astrophysics does not present any difficultyiQ. In our mind, 

the main interest of this approach is that it allows one to utilize a new source of 

information: data from quarkonia spectroscopy, and perhaps in the future, results 

on the interquark potential obtained in lattice gauge theory simulations. 
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APPENDIX 

In a phenomenological model, one does not expect the vacuum to show up. The 

fact that we had a vacuum contribution in the expression of G(.z, ,s+) is due to the 

formalism that we used. Had we use for instance a particle operator approach rather 

than a field operator approach, we could have avoided this problem. Precisely, one 

could start from the many-body hamiltonian 

H = F{-iZ(i)*di + P(i),} + 5 Vij (A.11 
i=l 

and minimize its expectation value in the space of Slater determinants of the form 

dJl(d hb2) . . . . h(w) 

1 llz(Zl) 

Q=fl. 

tLz(z*) . . . . tLZ(ZN) 
(A-2) 

ON iN(Z2) : : : : L(ZN) 

where the $i are plane wawes of the form 

and 

u(p3 is a Dirac spinor. 

After doing the same reasoning for antiquarks as well, one would then be lead to5’) 

(2.15~) 

(2.15b) 

lJ,F = 0 (2.15~) 

where 

PF = 
\/(p - lJf)2 - rnk if (p - Ut)* > 771% 
0 otherwise 
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and 

there is a plus (resp. minus) sign in the expression of U,” if n - Ut) > rnH (resp. 

4. 

So equations (2.15a-c) have been obtained without vacuum complications. 

It may be worth pointing out at this point, that the usual renormalization 

procedures such as normal ordering or addition of center-terms, cannot be used in 

our approach. First, there is a risk of double counting: when one uses an interquark 

potential derived from experiment, to compute it theoretically one would already 

have included canter-terms, so using such a potential in (2.1) and later adding 

counter-terms would not be very consistent. Next, in order to renormalize the 

Hartree gap equation (2.15a), one needs to add counter-terms with coefficients of 

the form15) 

a = g, J $+[G;:=“] 

p = -g: J $$Tr[G$=“]2 

7 = 2!g; $+Tr[Gf:=“]3 J 
X = 3!g: $$TI[G;:=‘]~ J (A-3) 

In our case, J d3r[aVc(r)] plays the part of gf/p2, and it depends on density, so the 

coefficients given by (A.3) would ss well. 
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FIGURE CAPTIONS 

Fig. la Plot of the effective msss as a function of the chemical potential for dif- 
ferent values of constant positive I?. A phase transition occurs if I? > 2.5. 

Fig. lb Plot of the effective msss sa a function of the chemical potential. Due to 
screening, it terminates more abruptly than in figure la. A glance at Fig. 2a 
allows one to determine which states are not mechanically stable (dotted line) 
and which states are physically accessible (dashed line). 

Fig. 2a Plot of the pressure as a function of the chemical potential. The transition 
is seen to be first order and is associated to a change of mass (dashed-dotted 
line in figure lb). For curve designation, see figure lb. 

Fig. 2b Plot of the energy per particle as a function of particle density. The plasma 
is in a collective bound state at low densities. 
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